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Abstract

Let G be a compact connected Lie group and X denote the complement of n distinct points of the
sphere S2. The space of isomorphism classes of flat G connections on X with fixed conjugacy class
of holonomy around each of n punctures has a natural symplectic structure. This space is related
to the space of geodesic n-gons in G. The space of geodesic polygons in G has a natural 2-form. It
is shown that this 2-form coincides with symplectic form on the space of isomorphism classes of
flat G-connections on X satisfying holonomy condition at the punctures. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Fix n distinct points
S :={s1,52,...,8.} C s?

of the two-dimensional sphere with n > 2. The complement $2\ S will be denoted by X.
Fix a point s’ € X. The fundamental group 71 (X, s”) will be denoted by I". Note that I" is
the quotient of the free group generated by n elements, say s, , ¥s,, - - - » Vs, by the normal
subgroup generated by yy, ¥s, - - - Vs, - The free homotopy class represented by any y;, is the
clockwise loop around s;.

Let G be a compact connected Lie group. The Lie algebra of G will be denoted by g.The
group G acts on itself by inner conjugation, and the infinitesimal form of this action is the
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adjoint action of G on g. Fix a G-invariant symmetric bilinear form B on g which is positive
definite. So, if G is semisimple, then B could be the negative of the Killing form.

For each s € S, fix a conjugacy class Cy C g. In other words, each C; is an orbit of the
G-action. They need not be distinct.

Let A denote the space of all maps f from the finite set S to g such that f(s) € C for
each s € S and also satisfying the condition

exp(f (s1)) exp(f(s2)) - - - exp(f (sn—1)) exp(f (sn)) = e,

where exp : g — G is the exponential map and e is the identity element. The group G acts
on A through inner conjugation. In other words, the action of g € G on f sends it to the
composition

S'—f>g—g>g.
Let
- A
.\ A= — 1.1
4 — G (L.1)

denote the quotient map.
Note that for any f as above, sending each s € S to exp(f(s)) we get a homomorphism
from I" to G. This in turn gives a flat G-bundle over X. Let
Hom(I", G)
G
denote the subset consisting of homomorphisms p such that p(y5) € exp(Cy) foralls € S.
Therefore, we have a map

H:A—>TR (1.2)

R C

defined by H(f)(s) = exp(f(s)). From the properties of the exponential map it follows
that H is a diffeomorphism on an open dense subset of .A.

Using B, the space R has a natural symplectic structure [1,2,6,7]. The construction of
this symplectic form, which we will denote by £2(, will be recalled later. Let

Q= H*Q (1.3)

be the closed 2-form on A.

Using translations in G, the bilinear form B defines a Riemannian metric on G, which
will be denoted by B. The condition that B is G-invariant ensures that B does not depend
on whether the left or the right translation is used in its definition.

Given any f € A, we construct a geodesic polygon in G with the vertices

fi == exp(f(s1) exp(f(s2)) - - - exp(f (si)),

where i € [1, n]. Note that f,, = e. Setting, fo = e fori € [1, n], the edge connecting the
edge fi_1 to f; is the geodesic segment defined by

1+ fi—1exp(ifisi),

where t € [0, 1].
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A geodesic n-gon in G is a continuous map
t:[l,n] > G (1.4)

such that (0) = e¢ = t(n) and the restriction of t to each interval [i,i + 1], where i €
{0,1,...,n — 1}, is a geodesic segment. The space of polygons has drawn considerable
attention in recent times [9,10].

Denoting the space of all geodesic n-gons by G, we have a smooth map

b:A—>G (1.5)

that sends any f to the geodesic polygon defined above.

Consider the tri-linear form 6y on g defined by (a, b, ¢) — B(a, [b, c]). This form is
clearly alternating and G invariant. Let § denote the 3-form on G obtained from 6 using
translations. Since 6y is G-invariant, left and right translations of it coincide. It is known
that 6 is closed.

Lett : [1,n] — G, asin (1.4), be a geodesic n-gon and let /1, I», ..., [, be its edges. A
tangent vector v € TG gives a Jacobi field along each [;. Recall that a Jacobi field along a
geodesic segment / is a Riemannian manifold M is a smooth section of the restricted tangent
bundle TM|; over [ which is obtained from a 1-parameter family of geodesic segments
deforming [ [4], [5, pp. 357]. From the definition of a Jacobi field it is immediate that v
gives a Jacobi field on each /;. In particular, it is a section of 7G|, which is piece-wise
smooth. We will call a section of t*TG, whose restriction to each edge is a Jacobi field, as
a Jacobi field on t.

Now, given an ordered pair of tangent vector v, w € T;G, let v and w denote the cor-
responding sections of T*TG defining Jacobi fields on 7. Recall that T*6 is a section of
* A3 T*G. Therefore, contracting 7*@ with v and w we get a piece-wise smooth 1-form
on [1, n]. Let 6 (v, w) € R be the integral of this 1-form on [1, n].

Consequently, we have a 2-form

2
0 e C® (g, A\ T*Q) (1.6)

that sends the ordered pair of tangent vectors v, w to 6 (v, w) defined above.
Now we are in a position to state the result obtained here.

Theorem 1.1. The 2-form ¥*§2 on A coincides with ¢*6, where ¥, 2 and ¢ are defined
in (1.1), (1.3) and (1.5), respectively. Equivalently, ¢p*0 descends to A and the descended
form coincides with 2.

The proof will be carried out in the next section.

2. Equivalence of symplectic forms

We start by recalling the description of the symplectic form £2y.
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The space R defined in the introduction is clearly the space of isomorphism classes of
all pairs (P, V), where P is a principal G-bundle over X and V is a flat connection on P,
with the property that for any s € §, the holonomy of the connection V around s lies in the
conjugacy class in G defined exp(Cy). Let ad(P) denote the adjoint bundle associated to
P for the adjoint representation of G in g. The connection V induces a flat connection on
ad(P). Let ad(P) denote the local system on X given by the sheaf of flat sections of ad(P).

Let(: X — S denote the inclusion map.

The tangent space to R at the point p = (P, V) has the following description [2, Lemma
2.2], [3, Proposition 2.4]

T,R = H'(S%, .ad(P)).

The bilinear form B on g, using its G-invariance condition, induces a bilinear form on
the fibers of ad(P). The symplectic form 29 on R is defined by the following pairing [2,
Theorem 2.8], [3, (2.5)]

T,RQT,R = H'(S%, 1,ad(P)) ® H'(§?, t,ad(P))
> H2(S?, t,ad(P) ® tead(P)) 2 H2(S?,R) = R.

Since B is G-invariant, it defines a bilinear pairing B: tyad(P) ® t,ad(P) — R.
The symplectic structure §2p has other alternative descriptions [8].

The pulled back form ¥*$2 = (H o ¥)*£2o on A will be described. The maps H and v
are defined in (1.2) and (1.1), respectively. For this purpose it is necessary to describe the
tangent bundle of A.

Let f : § — gbe an element of A. So, f(s) € C, forall s € S and [T, f(si) = e. For
any i € [1, n], set

Ji = exp(f(s1)) exp(f(s2))---exp(f(si)) = l_[exp(f(Sj)) €G. (2.1)
j=1
So, f, = e.Forany s € S, let

g(f(s)=1[f(s), gl Cg (2.2)

be the linear subspace of g. Note that g(f(s)) = 0if f(s) is in the center of g.
As before, the adjoint action of G on g will be denoted by ad. So, g € G takes a € g to

ad(g)(@).
Let V¢ denote the space of all functions v : § — g satisfying the following two condi-
tions:

1. v(s) € g(f(s)) forevery s € S, where g(f(s)) is defined in (2.2);
2. for the adjoint action of f; € G on v(s;)

> "ad(fi)(v(si)) =0,

i=1

where f; is defined in (2.1).
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Note that V¢ is a linear subspace of the direct sum g(S) := @sesg of n copies
of g.

Lemma 2.1. The tangent space to A at f, namely TfA, is canonically identified with the
vector space Vy.

Proof. The space A is a subset of g(S) := Dses9, the space of all functions from S to g.
Since, g(S) is a vector space, its tangent space at any point is identified with the vector space
g(S) itself. Therefore, for any f € A and v € g(S), we need to determine the conditions
that ensure that v € TfA. In other words, we need to find the infinitesimal form of the
conditions that define the subset A of a(S).

The first of the two conditions defining A says that i1 € A implies i (s) € Cy foralls € S.
The infinitesimal form of this condition is easily seen to be the condition that v(s) € g(f(s))
for all s € S. Indeed, this is an immediate consequence of the identity

%ad(exp(ld))ﬂ = [a, B]

valid for any o, 8 € g.

The other condition defining A says that 2 € A implies [ ] sesh(s) = e. The adjoint action
and the exponential map commute, namely exp(ad(g)a) = g exp(a)g~' forany g € G and
a € g. Using this it is easy to deduce that the infinitesimal form of the second condition
says that )/ ad(f;)(v(s;)) = 0. This completes the proof of the lemma. O

We will now use a description of £2¢ given in [1, pp. 109, Theorem 1].

Take a point f € A. Take two tangent vectors v, w € Vi = TfA. So, in particular, f, v
and w are functions from S to g. The following proposition is a direct consequence of [1,
Theorem 1].

Proposition 2.2. The number

D B(f(), [u(s), w(s)) € R

seS

coincides with W* 2 (v, w), where W*§2 is the 2-form on A with W and §2 defined in (1.1)
and (1.3), respectively.

Take any g € G and o € g. Consider the geodesic segment
[:10,1]1— G

defined by ¢ > gexp(ta). Forany 8 € g, let ,3 denote the right invariant vector field on G
such that /§ (e) = B. The section of [*TG obtained by restricting ,3 to the image of [ will be
denoted by 8.

It is easy to see that S is a Jacobi field on /. Indeed, for any ¢ € R consider the geodesic
segment

l.:[0,1]1 = G
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defined by r — exp(cp)g exp(tw). Clearly, o = [, and the tangent space to / defined by the
derivative (dl./dc)|.—o coincides with .

Recall the 3-form 6 on G constructed in Section 1 from the tri-linear form 6y on g. Given
any ordered pair of vectors B, ¥ € g, the contraction of 6 by the ordered pair 8, y, defines
a 1-form on [0, 1]. This 1-form on [0, 1] will be denoted by w (B, y).

In view of Proposition 2.2 and the definition of the 2-form 6 in (1.6), the proof of Theorem
1.1 is completed by the following proposition.

Proposition 2.3. Given any pair 8,y € g,
/[o Hw(ﬁ y) =0o(a, B, y) := B, [B,y] € R,
where w (B, y) is defined above.

Proof. It is easy to check that the 1-form w (8, y) on [0, 1] is the constant form that sends
a unit tangent vector to B(«, [B, y1). From this the proposition follows immediately. [

Given any geodesic polygon 7 as in (1.4), using Proposition 2.3 for each individual edge
of 7 it follows that ¢*6 coincides with the expression for *£2 given by Proposition 2.2.
This completes the proof of Theorem 1.1.
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