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Abstract

Let G be a compact connected Lie group and X denote the complement of n distinct points of the
sphere S2. The space of isomorphism classes of flat G connections on X with fixed conjugacy class
of holonomy around each of n punctures has a natural symplectic structure. This space is related
to the space of geodesic n-gons in G. The space of geodesic polygons in G has a natural 2-form. It
is shown that this 2-form coincides with symplectic form on the space of isomorphism classes of
flat G-connections on X satisfying holonomy condition at the punctures. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Fix n distinct points

S := {s1, s2, . . . , sn} ⊂ S2

of the two-dimensional sphere with n ≥ 2. The complement S2\S will be denoted by X.
Fix a point s′ ∈ X. The fundamental group π1(X, s′) will be denoted by Γ . Note that Γ is
the quotient of the free group generated by n elements, say γs1 , γs2 , . . . , γsn , by the normal
subgroup generated by γs1γs2 · · · γsn . The free homotopy class represented by any γsi is the
clockwise loop around si .

Let G be a compact connected Lie group. The Lie algebra of G will be denoted by g.The
group G acts on itself by inner conjugation, and the infinitesimal form of this action is the

E-mail address: indranil@math.tifr.res.in (I. Biswas).

0393-0440/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 3 9 3 -0 4 40 (01 )00004 -3



130 I. Biswas / Journal of Geometry and Physics 39 (2001) 129–134

adjoint action of G on g. Fix a G-invariant symmetric bilinear form B on gwhich is positive
definite. So, if G is semisimple, then B could be the negative of the Killing form.

For each s ∈ S, fix a conjugacy class Cs ⊂ g. In other words, each Cs is an orbit of the
G-action. They need not be distinct.

Let Ā denote the space of all maps f from the finite set S to g such that f (s) ∈ Cs for
each s ∈ S and also satisfying the condition

exp(f (s1)) exp(f (s2)) · · · exp(f (sn−1)) exp(f (sn)) = e,

where exp : g→ G is the exponential map and e is the identity element. The group G acts
on Ā through inner conjugation. In other words, the action of g ∈ G on f sends it to the
composition

S
f→g g→g.

Let

ψ : Ā → A := Ā

G
(1.1)

denote the quotient map.
Note that for any f as above, sending each s ∈ S to exp(f (s)) we get a homomorphism

from Γ to G. This in turn gives a flat G-bundle over X. Let

R ⊂ Hom(Γ,G)

G

denote the subset consisting of homomorphisms ρ such that ρ(γs) ∈ exp(Cs) for all s ∈ S.
Therefore, we have a map

H : A→ R (1.2)

defined by H(f )(s) = exp(f (s)). From the properties of the exponential map it follows
that H is a diffeomorphism on an open dense subset of A.

Using B, the space R has a natural symplectic structure [1,2,6,7]. The construction of
this symplectic form, which we will denote by Ω0, will be recalled later. Let

Ω := H ∗Ω0 (1.3)

be the closed 2-form on A.
Using translations in G, the bilinear form B defines a Riemannian metric on G, which

will be denoted by B̄. The condition that B is G-invariant ensures that B̄ does not depend
on whether the left or the right translation is used in its definition.

Given any f ∈ Ā, we construct a geodesic polygon in G with the vertices

fi := exp(f (s1)) exp(f (s2)) · · · exp(f (si)),

where i ∈ [1, n]. Note that fn = e. Setting, f0 = e for i ∈ [1, n], the edge connecting the
edge fi−1 to fi is the geodesic segment defined by

t �→ fi−1 exp(tf(si)),

where t ∈ [0, 1].
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A geodesic n-gon in G is a continuous map

τ : [1, n] → G (1.4)

such that τ(0) = e = τ(n) and the restriction of τ to each interval [i, i + 1], where i ∈
{0, 1, . . . , n − 1}, is a geodesic segment. The space of polygons has drawn considerable
attention in recent times [9,10].

Denoting the space of all geodesic n-gons by G, we have a smooth map

φ : Ā → G (1.5)

that sends any f to the geodesic polygon defined above.
Consider the tri-linear form θ0 on g defined by (a, b, c) �→ B(a, [b, c]). This form is

clearly alternating and G invariant. Let θ̄ denote the 3-form on G obtained from θ0 using
translations. Since θ0 is G-invariant, left and right translations of it coincide. It is known
that θ̄ is closed.

Let τ : [1, n] → G, as in (1.4), be a geodesic n-gon and let l1, l2, . . . , ln be its edges. A
tangent vector v ∈ TτG gives a Jacobi field along each li . Recall that a Jacobi field along a
geodesic segment l is a Riemannian manifoldM is a smooth section of the restricted tangent
bundle TM|l over l which is obtained from a 1-parameter family of geodesic segments
deforming l [4], [5, pp. 357]. From the definition of a Jacobi field it is immediate that v
gives a Jacobi field on each li . In particular, it is a section of TG|τ which is piece-wise
smooth. We will call a section of τ ∗TG, whose restriction to each edge is a Jacobi field, as
a Jacobi field on τ .

Now, given an ordered pair of tangent vector v,w ∈ TτG, let v̄ and w̄ denote the cor-
responding sections of τ ∗TG defining Jacobi fields on τ . Recall that τ ∗θ̄ is a section of
τ ∗ ∧3 T ∗G. Therefore, contracting τ ∗θ̄ with v̄ and w̄ we get a piece-wise smooth 1-form
on [1, n]. Let θ(v,w) ∈ R be the integral of this 1-form on [1, n].

Consequently, we have a 2-form

θ ∈ C∞
(
G,

2∧
T ∗G

)
(1.6)

that sends the ordered pair of tangent vectors v,w to θ(v,w) defined above.
Now we are in a position to state the result obtained here.

Theorem 1.1. The 2-form ψ∗Ω on Ā coincides with φ∗θ , where ψ , Ω and φ are defined
in (1.1), (1.3) and (1.5), respectively. Equivalently, φ∗θ descends to A and the descended
form coincides with Ω .

The proof will be carried out in the next section.

2. Equivalence of symplectic forms

We start by recalling the description of the symplectic form Ω0.
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The space R defined in the introduction is clearly the space of isomorphism classes of
all pairs (P,∇), where P is a principal G-bundle over X and ∇ is a flat connection on P ,
with the property that for any s ∈ S, the holonomy of the connection ∇ around s lies in the
conjugacy class in G defined exp(Cs). Let ad(P ) denote the adjoint bundle associated to
P for the adjoint representation of G in g. The connection ∇ induces a flat connection on
ad(P ). Let ad(P ) denote the local system on X given by the sheaf of flat sections of ad(P ).

Let ι : X → S2 denote the inclusion map.
The tangent space toR at the point ρ = (P,∇) has the following description [2, Lemma

2.2], [3, Proposition 2.4]

TρR = H 1(S2, ι∗ad(P )).

The bilinear form B on g, using its G-invariance condition, induces a bilinear form on
the fibers of ad(P ). The symplectic form Ω0 on R is defined by the following pairing [2,
Theorem 2.8], [3, (2.5)]

TρR⊗ TρR = H 1(S2, ι∗ad(P )) ⊗ H 1(S2, ι∗ad(P ))

→H 2(S2, ι∗ad(P ) ⊗ ι∗ad(P ))
B̃→H 2(S2,R) = R.

Since B is G-invariant, it defines a bilinear pairing B̃ : ι∗ad(P ) ⊗ ι∗ad(P ) → R.
The symplectic structure Ω0 has other alternative descriptions [8].
The pulled back form ψ∗Ω = (H ◦ ψ)∗Ω0 on Ā will be described. The maps H and ψ

are defined in (1.2) and (1.1), respectively. For this purpose it is necessary to describe the
tangent bundle of Ā.

Let f : S → g be an element of Ā. So, f (s) ∈ Cs for all s ∈ S and
∏n

i=1f (si) = e. For
any i ∈ [1, n], set

fi := exp(f (s1)) exp(f (s2)) · · · exp(f (si)) =
i∏

j=1

exp(f (sj )) ∈ G. (2.1)

So, fn = e. For any s ∈ S, let

g(f (s)) := [f (s), g] ⊂ g (2.2)

be the linear subspace of g. Note that g(f (s)) = 0 if f (s) is in the center of g.
As before, the adjoint action of G on g will be denoted by ad. So, g ∈ G takes α ∈ g to

ad(g)(α).
Let Vf denote the space of all functions v : S → g satisfying the following two condi-

tions:

1. v(s) ∈ g(f (s)) for every s ∈ S, where g(f (s)) is defined in (2.2);
2. for the adjoint action of fi ∈ G on v(si)

n∑
i=1

ad(fi)(v(si)) = 0,

where fi is defined in (2.1).
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Note that Vf is a linear subspace of the direct sum g(S) := ⊕s∈Sg of n copies
of g.

Lemma 2.1. The tangent space to Ā at f , namely Tf Ā, is canonically identified with the
vector space Vf .

Proof. The space Ā is a subset of g(S) := ⊕s∈Sg, the space of all functions from S to g.
Since, g(S) is a vector space, its tangent space at any point is identified with the vector space
g(S) itself. Therefore, for any f ∈ Ā and v ∈ g(S), we need to determine the conditions
that ensure that v ∈ Tf Ā. In other words, we need to find the infinitesimal form of the
conditions that define the subset Ā of g(S).

The first of the two conditions defining Ā says that h ∈ Ā implies h(s) ∈ Cs for all s ∈ S.
The infinitesimal form of this condition is easily seen to be the condition that v(s) ∈ g(f (s))
for all s ∈ S. Indeed, this is an immediate consequence of the identity

d

dt
ad(exp(tα))β = [α, β]

valid for any α, β ∈ g.
The other condition defining Ā says that h ∈ Ā implies

∏
s∈Sh(s) = e. The adjoint action

and the exponential map commute, namely exp(ad(g)α) = g exp(α)g−1 for any g ∈ G and
α ∈ g. Using this it is easy to deduce that the infinitesimal form of the second condition
says that

∑n
i=1ad(fi)(v(si)) = 0. This completes the proof of the lemma. �

We will now use a description of Ω0 given in [1, pp. 109, Theorem 1].
Take a point f ∈ Ā. Take two tangent vectors v,w ∈ Vf = Tf Ā. So, in particular, f , v

and w are functions from S to g. The following proposition is a direct consequence of [1,
Theorem 1].

Proposition 2.2. The number∑
s∈S

B(f (s), [v(s), w(s)]) ∈ R

coincides with ψ∗Ω(v,w), where ψ∗Ω is the 2-form on Ā with ψ and Ω defined in (1.1)
and (1.3), respectively.

Take any g ∈ G and α ∈ g. Consider the geodesic segment

l : [0, 1] → G

defined by t �→ g exp(tα). For any β ∈ g, let β̂ denote the right invariant vector field on G

such that β̂(e) = β. The section of l∗TG obtained by restricting β̂ to the image of l will be
denoted by β̄.

It is easy to see that β̄ is a Jacobi field on l. Indeed, for any c ∈ R consider the geodesic
segment

lc : [0, 1] → G
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defined by t �→ exp(cβ)g exp(tα). Clearly, l0 = l, and the tangent space to l defined by the
derivative (dlc/dc)|c=0 coincides with β̄.

Recall the 3-form θ̄ on G constructed in Section 1 from the tri-linear form θ0 on g. Given
any ordered pair of vectors β, γ ∈ g, the contraction of θ̄ by the ordered pair β̄, γ̄ , defines
a 1-form on [0, 1]. This 1-form on [0, 1] will be denoted by ω(β, γ ).

In view of Proposition 2.2 and the definition of the 2-form θ in (1.6), the proof of Theorem
1.1 is completed by the following proposition.

Proposition 2.3. Given any pair β, γ ∈ g,∫
[0,1]

ω(β, γ ) = θ0(α, β, γ ) := B(α, [β, γ ]) ∈ R,

where ω(β, γ ) is defined above.

Proof. It is easy to check that the 1-form ω(β, γ ) on [0, 1] is the constant form that sends
a unit tangent vector to B(α, [β, γ ]). From this the proposition follows immediately. �

Given any geodesic polygon τ as in (1.4), using Proposition 2.3 for each individual edge
of τ it follows that φ∗θ coincides with the expression for ψ∗Ω given by Proposition 2.2.
This completes the proof of Theorem 1.1.
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